Sieve M Inference on Irregular Parameters

نویسندگان

  • Xiaohong Chen
  • Zhipeng Liao
چکیده

This paper presents sieve inferences on possibly irregular (i.e., slower than root-n estimable) functionals of semi-nonparametric models with i.i.d. data. We provide a simple consistent variance estimator of the plug-in sieve M estimator of a possibly irregular functionals, which implies that the sieve t statistic is asymptotically standard normal. We show that, even for hypothesis testing of irregular functionals, the sieve likelihood ratio statistic is asymptotically Chi-square distributed. These results are useful in inference on structural parameters that may have singular semiparametric e¢ ciency bounds. The proposed inference methods are investigated in a simulation study and an empirical example. JEL Classi…cation: C12, C14

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sieve Inference on Possibly Misspecified Semi-nonparametric Time Series Models∗

This paper first establishes the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi-nonparametric time series models. We show that, even when the sieve score process is not a martingale difference, the asymptotic variances of plug-in sieve M estimators of irregular (i.e., slower than root-T estimable) functionals are the same as those for independent da...

متن کامل

SIEVE QUASI LIKELIHOOD RATIO INFERENCE ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals. These models belong to the difficult (nonlinear) ill-posed inverse problems with unknown operators, and include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is generally difficult to verify wh...

متن کامل

SIEVE WALD AND QLR INFERENCES ON SEMI/NONPARAMETRIC CONDITIONAL MOMENT MODELS By

This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. For these models it is often difficult to verify whether a functional is regular (i.e., root-n estimable) or irregular (i.e., slower than root-n estimabl...

متن کامل

METHODS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSIONS WITH ENDOGENEITY: A GENTLE GUIDE By

This paper reviews recent advances in estimation and inference for nonparametric and semiparametric models with endogeneity. It first describes methods of sieves and penalization for estimating unknown functions identified via conditional moment restrictions. Examples include nonparametric instrumental variables regression (NPIV), nonparametric quantile IV regression and many more semi-nonparam...

متن کامل

Developing new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability

Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014